

Introduction

The Crealysm_11 engine reads 3D scenes

described below. The purpose of this custom file format is to maximize runtime

performance. The engine's resource manager only adds the full 3D scene as a

resource. The individual mesh instances, light sources, camera etc. are basically

POD's / not take up mentionworthy memory.

Key features

• A scene can have up to

• A scene always has one start/ initial camera defined

• Because the invididual objects within the 3D scene are not added to the

resource manager, they don't have a global unique ID (GUID)

o Using the objects within the scene is done using the vector

which are based on the order of the objects in the scene file

• The DDC/ engine tools are responsible for linking game objects to scene

objects, e.g. mesh instances or light sources

• Global variables for the scene are included in the file format (e.g

ambient light)

• Worldspace units: 1.0 = 1 meter

Version control

• Currently only version 1 of the file format is available

o the header of the binary file format includes the version, to be able

to provide backwards compatibility when future file versions

Platform support

• Usable on platforms using

o Including x86 processor architecture, PC's, PlayStation 4, XBox one

• All used variable type are read and written in fixed width types

o using <cstdint> (i.e. uint

o with the exception of "floating point values" (floats), because

currently there's no fixed width float type available

Crealysm_11

Binary 3D scene file format

Data definitions

Updated: 2018-07-0

reads 3D scenes directly in the binary file format

described below. The purpose of this custom file format is to maximize runtime

The engine's resource manager only adds the full 3D scene as a

resource. The individual mesh instances, light sources, camera etc. are basically

POD's / not take up mentionworthy memory.

A scene can have up to 256 3D cameras (minimum is 1)

A scene always has one start/ initial camera defined

Because the invididual objects within the 3D scene are not added to the

resource manager, they don't have a global unique ID (GUID)

Using the objects within the scene is done using the vector

which are based on the order of the objects in the scene file

The DDC/ engine tools are responsible for linking game objects to scene

objects, e.g. mesh instances or light sources

Global variables for the scene are included in the file format (e.g

Worldspace units: 1.0 = 1 meter

Currently only version 1 of the file format is available

the header of the binary file format includes the version, to be able

to provide backwards compatibility when future file versions

Usable on platforms using a 'little endian' system

Including x86 processor architecture, PC's, PlayStation 4, XBox one

All used variable type are read and written in fixed width types

using <cstdint> (i.e. uint8_t, uint16_t, uint32_t)

with the exception of "floating point values" (floats), because

currently there's no fixed width float type available

file format

06

directly in the binary file format

described below. The purpose of this custom file format is to maximize runtime

The engine's resource manager only adds the full 3D scene as a

resource. The individual mesh instances, light sources, camera etc. are basically

Because the invididual objects within the 3D scene are not added to the

resource manager, they don't have a global unique ID (GUID)

Using the objects within the scene is done using the vector indices,

which are based on the order of the objects in the scene file

The DDC/ engine tools are responsible for linking game objects to scene

Global variables for the scene are included in the file format (e.g. for

the header of the binary file format includes the version, to be able

to provide backwards compatibility when future file versions exist

Including x86 processor architecture, PC's, PlayStation 4, XBox one

All used variable type are read and written in fixed width types

with the exception of "floating point values" (floats), because

currently there's no fixed width float type available

Data definitions

The table below describes all data elements in the 3D scene file format.

 Data Variable

type

Size Comments

0 Magic header char array 24 bytes Fixed value

1 File version uint8_t 1 byte Version number(e.g. 1)

2 Number of cameras uint8_t 1 byte Max 256

3 Number of mesh

instances

uint16_t 2 bytes Max 65535

4 Number of point

lights

uint8_t 1 byte Max 256

5 Number of

directional lights

uint8_t 1 byte Max 256

6 Number of spot

lights

uint8_t 1 byte Max 256

7 Number of capsule

lights

uint8_t 1 byte Max 256

8 Start camera ID uint8_t 1 byte Active camera when

scene is initialized

 3D cameras

9 Position XYZ float array 3*4 bytes

10 Pitch angle Float 4 bytes X, angle in degrees

11 Yaw angle Float 4 bytes Y, angle in degrees

12 Roll angle Float 4 bytes Z, angle in degrees

13 FOV Y Float 4 bytes Field of view Y-axis,

angle in degrees

14 Near plane float 4 bytes Near plane distance

15 Far plane float 4 bytes Far plane distance

 Mesh instances

16 Mesh ID uint16_t 2 bytes Reference ID to mesh

17 Position float array 3*4 bytes Worldspace transform

18 Rotation float array 3*4 bytes Worldspace transform

19 Scale float array 3*4 bytes Worldspace transform

20 Dynamic uint8_t 1 byte 0 = no, 1 = yes

21 Depth enabled uint8_t 1 byte 0 = no, 1 = yes

22 Affected by light uint8_t 1 byte 0 = no, 1 = yes

23 Is a collider uint8_t 1 byte 0 = no, 1 = yes

 Directional lights (lightsource)

24 Color

25 Intensity

26 Dynamic

27 Casts shadows

28 Direction float array 3*4 bytes XYZ vector, normalized

 Point lights (lightsource)

29 Color float array 3*4 bytes SRGB color of the light

30 Intensity float 4 bytes Light intensity

31 Dynamic uint8_t 1 byte 0 = no, 1 = yes

32 Casts shadows uint8_t 1 byte 0 = no, 1 = yes

33 Position float array 3*4 bytes World space position

 Spot lights (lightsource)

34 Color

35 Intensity

36 Dynamic

37 Casts shadows

38 Position float array 3*4 bytes World space position

39 Direction float array 3*4 bytes XYZ vector, normalized

40 Range float 4 bytes World space units

41 Outer angle float 4 bytes Angle in degrees

42 Inner angle float 4 bytes Angle in degrees

43 Projected uint8_t 1 byte 0 = no, 1 = yes

43b Texture ID uint16_t 2 bytes Projected texture

43c Up vector float array 3*4 bytes XYZ vector, normalized

43d Aspect ratio float 4 bytes

 Capsule lights (lightsource)

44 Color

45 Intensity

46 Dynamic

47 Casts shadows

48 Position float array 3*4 bytes World space position

49 Range float 4 bytes World space units

50 Direction float array 3*4 bytes XYZ vector, normalized

51 Length float 4 bytes Following direction

vector

 Byte counter uint32_t 4 bytes Checksum

